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Assessing the Trustworthiness of our Cumulative Knowledge in Learning, Behavior, and 

Performance

ABSTRACT

Meta-analytic studies are the primary way for systematically synthesizing quantitative research 

findings to cumulate knowledge. As such, they have substantial influence on research and 

practice. Recently, however, the robustness of results from some meta-analytic studies in

management has been questioned. Despite this, very few studies assess the presence and impact 

of publication bias (PB) and outliers, two factors influencing the non-robustness of meta-analytic 

results. In this study, we use a comprehensive sensitivity analysis approach to reexamine datasets 

from nine meta-analyses of correlation coefficients published in Psychological Bulletin that were 

categorized in the area of learning, behavior, and performance. We reexamined 123 distributions 

from these nine meta-analytic studies. Our results indicate that 88% of the meta-analytic results 

reported in the nine meta-analytic studies are unlikely to be robust. The degree of the non-

robustness was classified as being ‘severe’ (i.e., > 40%) in 78% of the meta-analytic 

distributions. These results suggest that most of the meta-analytic results and associated 

conclusions and recommendations in this area may not be trustworthy. This adds to a growing 

body of evidence suggesting that our research practices may need to be revised to improve the 

trustworthiness of our cumulative knowledge in management and the social sciences.

Keywords: 

Meta-analysis, outliers, publication bias
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Assessing the Trustworthiness of our Cumulative Knowledge in Learning, Behavior, and 

Performance

The trustworthiness of our cumulative scientific knowledge has come under scrutiny 

across many areas of science (Goldstein, 2010), ranging from physics, biology, and medicine to 

the social sciences (e.g., Fanelli, 2010; NSF SBE Advisory Committee, 2015). According to 

some, our scientific disciplines may be experiencing a crisis of confidence (Earp & Trafimow, 

2015; Ioannidis, 2005; Pashler & Wagenmakers, 2012). Numerous factors related to our

scientific process, including our publication norms and standards, seem to lie at the heart of the 

potential crisis (Kepes & McDaniel, 2013; O’Boyle, Banks & Gonzalez-Mulé, 2017; Pashler & 

Wagenmakers, 2012; Simmons, Nelson & Simonsohn, 2011). However, before speculating about 

the potential factors which may have led to the potential crisis, it is important to first determine if 

there really have been adverse effects on our cumulative knowledge in a particular research area,

and, to what extent these adverse effects exist. We will explore this by examining the robustness 

of meta-analytic results from studies published in Psychological Bulletin in one management-

relevant literature area – learning, behavior, and performance. 

HOW TRUSTWORTHY IS OUR CUMULATIVE SCIENTIFIC KNOWLEDGE?

Meta-analytic studies are the primary way for systematically synthesizing quantitative 

research findings to generate cumulative scientific knowledge (Borenstein, Hedges, Higgins & 

Rothstein, 2009; Kepes, McDaniel, Brannick & Banks, 2013). It is therefore troublesome that the 

accuracy of select meta-analytic studies has been questioned (e.g., Banks, Kepes & McDaniel, 

2012; Banks, Kepes & McDaniel, 2015; Kepes, Banks & Oh, 2014; Kepes & McDaniel, 2015). 

Potential reasons for inaccuracy in our literature include the presence of publication bias and 

outliers. Publication bias (PB) denotes a situation in which the publicly available literature on a 
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particular relation of interest is not representative of all studies on that relation (Banks et al., 

2015; Kepes, Banks, McDaniel & Whetzel, 2012). Thus, PB refers to data suppression, typically 

with respect to effect size data from primary samples. 

Such suppression is not necessarily due to purposeful intent; researchers, including 

authors, reviewers, and editors, make decisions during the scientific and publishing process that 

can inadvertently lead to the suppression of results, typically statistically non-significant ones 

(Banks et al., 2015; Chalmers & Dickersin, 2013; Kepes & McDaniel, 2013). Therefore, PB may 

denote ‘errors of exclusion;’ that is, some results are not reported but should be. Most suppressed 

research likely contains null results, or results that were not hypothesized (Fanelli, 2010; Sterling 

& Rosenbaum, 1995). Furthermore, some evidence indicates that this may be especially 

pronounced in our most prestigious journals (Eisend & Tarrahi, 2014; Murtaugh, 2002). Because 

statistically non-significant results (most likely small magnitude effect sizes) are often 

suppressed, meta-analytic mean estimates can be misestimated, typically overestimated (Kepes et 

al., 2012; Rothstein, Sutton & Borenstein, 2005b). This misestimation can lead to the use of 

ineffective interventions, practices, or policies as well as the misdirection of research agendas. 

Put differently, at best, this leads to ineffective allocation of limited resources for research and 

practice.

Outliers are another phenomenon that can distort empirical results. Outliers or extreme 

effect size values, refer to effect size data points that are inconsistent with the vast majority of 

the data (Orr, Sackett & Dubois, 1991; Viechtbauer & Cheung, 2010). Therefore, they can be 

considered ‘errors of inclusion,’ data that are in one’s dataset although such data probably should 

not be included. Such data points can be due to random sampling error, transcription errors, or 

reflect some unique characteristic of a particular sample (e.g., an uncommon operationalization 
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of a construct). Just like PB, the presence of outliers can adversely affect the results and 

conclusions of meta-analytic studies (Ada, Sharman & Balkundi, 2012; Viechtbauer & Cheung, 

2010). Unfortunately, only 4% of all meta-analyses conduct PB analyses with appropriate 

methods (Banks et al., 2012) and less than 3% examine the effects of potential outliers (Aguinis, 

Dalton, Bosco, Pierce & Dalton, 2011). Therefore, we do not have a good understanding of the 

extent to which these phenomena have affected meta-analytic results. One of our goals is 

therefore to use more appropriate methods to obtain a better estimate regarding the presence and 

severity of PB and outliers in the management-relevant literature area of learning, behavior, and 

performance. 

Causes of a Systematically Unrepresentative Literature

Because the probability of publishing a paper is associated with the number of 

statistically significant results (Cucina & McDaniel, 2016; Fanelli, 2010; Kepes & McDaniel, 

2013; Sterling & Rosenbaum, 1995), researchers may be motivated to marshal the available 

“methodological flexibility” to obtain the desired statistically significant results (Kepes & 

McDaniel, 2013, p. 255; see also, e.g., Ferguson & Heene, 2012; Simmons et al., 2011). Thus, 

factors such as our journals’ obsession with statistically significant results (Fanelli, 2010) may 

motivate researchers to engage in questionable research practices (QRPs) to increase their 

publication count. 

The combination of our field’s theory-orientation (Campbell & Wilmot, 2018), the lack 

of research registries, reproducibility assessments, and replications, allows and even motivates 

researchers to engage in QRPs. For instance, researchers can manipulate their data and analyses 

until they find statistically significant results that are interesting, popular, or newsworthy, and 

thus deemed worthy of publication in our journals (Davis, 1971; Hartshorne & Schachner, 2012; 



Sheila List, Virginia Commonwealth U., lists@vcu.edu
Sven Kepes, Michael A McDaniel, Xavier MacDaniel

17358

5

LeBel & Peters, 2011; Pfeffer, 2007). Further, without research registries, researchers can hide 

null or otherwise uninteresting results from the scientific community. In addition, the lack of 

reproducibility assessments and direct replications in our journals (Makel, Plucker & Hegarty, 

2012; Wicherts, Borsboom, Kats & Molenaar, 2006) suggests that non-robust and potentially 

erroneous results are not identified. Hence, PB and outliers are likely to exist in our published 

literature. 

The prevalence of underpowered samples is an additional factor that should be addressed. 

Sample sizes throughout the 1990’s and 2000’s have remained relatively stable (Shen, Kiger, 

Davies, Rasch R. L., Simon K. M. & Ones, 2011). Yet, the complexity of our theoretical models 

(e.g., moderated mediation) has continued to increase, likely raising the prevalence of 

underpowered samples (Thoemmes, MacKinnon & Reiser, 2010) and thus the likelihood of type 

II errors. Taken together, factors such as the ones described above yield meta-analytic datasets 

that can be systematically biased due to suppressed results that are missing from the publicly 

available literature (i.e., PB) as well as the publication of extreme data points (i.e., outliers). As 

Kepes et al. (2012) noted, these dynamics are not random; they are systematic. Therefore, 

methods specifically designed to take these phenomena, PB and outliers, into account are needed 

to assess their effects on meta-analytic results and, thus, our cumulative knowledge.

Current Study

In this paper, we assess the trustworthiness of cumulative knowledge in one 

management-related area (learning, behavior, and performance) as published in Psychological 

Bulletin, the premier journal for meta-analyses in the social sciences, including applied 

psychology and management. Specifically, we examine whether errors of exclusion (i.e., PB) or 

errors of inclusion (i.e., outliers) have adversely affected published meta-analytic results in this 
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journal. If both types of errors (i.e., exclusion and inclusion) have affected meta-analytic results, 

we will assess which type had more adverse effects.

METHOD

Publication bias and outlier analyses are best classified as sensitivity analyses. We 

performed a comprehensive battery of such analyses on meta-analytic datasets published in 

Psychological Bulletin. We searched APA’s PsycNET databases for all meta-analytic reviews 

published in this journal between 2000 and 2015 using search terms such as meta-analysis, meta-

analytic, meta-analyses, and systematic review. To be included in our study, a meta-analytic 

study had to fulfill four criteria. First, the study had to provide a clear description of the methods 

and meta-analytic distributions. Second, the study needed to include the raw data necessary for 

our re-analysis. Third, we limited our study to meta-analytic studies with correlation coefficients 

(e.g., Pearson’s r). Fourth, the study had to be categorized in the area of learning, behavior, and 

performance by three individuals with advanced degrees in psychology. Applying these 

decisions rules resulted in nine meta-analyses for re-analysis. We analyze only those original 

distributions with 10 or more effect sizes (i.e., k ≥ 10) because results from distributions with 

fewer effects may not be trustworthy due to inadequate statistical power and second-order 

sampling error (Kepes et al., 2012; Sterne et al., 2011). This left us with 123 meta-analytic 

distributions to be analyzed. Our search and winnowing processes are illustrated in Figure 1.

------------------------------------------
Insert Figure 1 about here

-------------------------------------------

Meta-analytic and Sensitivity Approach

We used the Hedges and Olkin (1985; Hedges & Vevea, 1998) meta-analytic approach, 

which allows for the implementation of comprehensive sensitivity analyses (Kepes & McDaniel, 
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2015; Kepes et al., 2013). We note that PB analyses have not been developed for psychometric 

meta-analysis. We used R version 3.2.4 (R Studio, 2017) and R Studio version 1.0.143 (R Studio, 

2017) with the metafor (Viechtbauer, 2015) and meta (Schwarzer, 2015) packages. We refer to 

the meta-analytic mean without any adjustment for potential biases as the ‘naïve’ meta-analytic 

mean (Copas & Shi, 2000) and to the mean estimates obtained from any sensitivity analysis as 

‘adjusted’ ones (Kepes et al., 2012). 

When implementing our meta-analytic and sensitivity analysis approach, we followed 

best practice recommendations (e.g., Kepes & McDaniel, 2015; Kepes et al., 2013; Rothstein et 

al., 2005b; Viechtbauer & Cheung, 2010) and used several methods to assess the potential 

presence of PB and outliers. We used the fixed-effects (FE) model and L0 estimator for the

implementation of trim and fill (Kepes et al., 2012; Sutton, 2005) and assess the robustness of 

these results by also using the random-effects (RE) model with the same estimator (Moreno et 

al., 2009). For the cumulative meta-analysis by precision, we examined the entire cumulative 

meta-analysis in a forest plot and, aligned with ideas from Stanley, Jarrell and Doucouliagos 

(2010), present the cumulative meta-analytic mean of the five most precise effect sizes (Kepes, 

Bushman & Anderson, 2017). For selection models, we used the a priori approach with p-value 

cut-points to model moderate and severe instances of PB recommended by Vevea and Woods 

(2005). PET-PEESE (precision-effect test, precision effect estimate with standard error; Stanley 

& Doucouliagos, 2014) was implemented with the conditional framework for selecting which 

model, PET or PEESE, to use to obtain the for bias ‘adjusted’ mean estimate (we used a one-

tailed significance test in this framework). For the assessment of outliers, we used the one-

sample removed technique (Borenstein et al., 2009) as well as Viechtbauer and Cheung’s (2010; 

Viechtbauer, 2015) battery of multivariate influence diagnostics. Detailed descriptions of these 
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methods are provided elsewhere (e.g., Banks et al., 2015; Kepes et al., 2012; Rothstein et al., 

2005b; Stanley & Doucouliagos, 2014; Vevea & Woods, 2005; Viechtbauer & Cheung, 2010).

When assessing the degree of any potential bias, we followed Kepes et al.’s (2012)

decision rules (see also Kepes & McDaniel, 2015). When comparing the originally obtained 

naïve meta-analytic mean to an adjusted one, adjusted for outliers, PB, or both, a relative change 

in the naïve meta-analytic mean estimate of less than or equal to 20% indicated that bias is 

negligible, a change greater than 20% but less than or equal to 40% was interpreted as moderate, 

and a change of more than 40% was considered severe. Furthermore, we did not rely on any 

single point estimate but, instead, adopted the triangulation approach (Jick, 1979; Orlitzky, 2012)

to locate the position of the ‘true’ mean effect and to assess the overall robustness of the 

originally obtained naïve meta-analytic mean estimate (Kepes et al., 2012; Kepes & McDaniel, 

2015). Specifically, we perform all PB methods before and after the removal of potential outliers 

and, thus, use 16 mean estimates, eight before and eight after the removal of potential outliers

(the meta-analytic mean, one estimate from the one-sample removed [osr] analysis, and six 

estimates from the PB analyses all before and after the removal of identified outliers), when 

estimating the likely location of the ‘true’ underlying mean effect. Therefore, we urge caution 

when interpreting any one result in isolation. Instead, one should look for convergence across the 

different methods. If sensitivity analyses results converge on a mean estimate that differs

noticeably (i.e., ≥ 20%; Kepes et al., 2012) from the naïve meta-analytic mean effect size 

estimate, evidence for bias and non-robustness is provided.

Because it is important to account for outliers when assessing publication bias, and for 

publication bias when assessing outliers (Kepes & McDaniel, 2015), we conducted all PB

analyses before and after the removal of the identified outliers. To summarize our results and 
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assess the potential severity of the bias and the robustness of the naïve meta-analytic mean (�̅�), 

we follow the procedures outlined by Kepes and McDaniel (2015) and calculate the average 

range estimate (ARE), baseline range estimate (BRE), and maximum range estimate (MRE). In 

brief, the ARE was calculated using the difference between the naïve meta-analytic mean 

estimate (�̅�) and the average of the other estimates (the meta-analytic mean after the removal of 

outliers as well as one estimate from the one study removed [osr] analysis and six estimates from 

the publication bias analyses, both before and after the removal of outliers). The BRE was 

defined as the absolute difference between the naïve mean (�̅�), the potentially best mean 

estimate of the original meta-analytic dataset, and the mean estimate across all sensitivity 

analyses that is farthest away from the naïve mean estimate. The MRE was operationalized as the 

absolute difference between the lowest and the highest value from any of the results of the naïve 

meta-analysis and the battery of sensitivity analyses. 

We then calculated the relative differences for the three range estimates. To calculate the 

relative difference of the range estimates, we used the naïve mean (�̅�) as the base (i.e., as 100%). 

We used benchmarks recommended by Kepes et al. (2012; see also, Kepes & McDaniel, 2015)

to infer the magnitude of bias. A negligible degree of bias was observed if the relative range 

(ARE, BRE, or MRE) was at least .02 and less than or equal to 20%, a moderate degree if it was 

at least .02 and greater than 20% and less than or equal to 40%, and a large degree if it was at 

least .02 and greater than 40%. Overall conclusions regarding the robustness of the obtained 

results were determined using the conclusions from the three range estimates, ARE, BRE, and 

MRE. If the conclusions of the three estimates were in agreement, the overall conclusion resulted 

in the practical difference noted by the three ranges (i.e., negligible, moderate, or large 
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difference). If the practical differences did not converge, we reported the range of the range 

estimates (e.g., moderate to large difference). 

When determining whether any non-robustness, if present, was due to publication bias, 

outliers, or their interaction (i.e., a combination of both), we examined the differences between 

the naïve meta-analytic estimate (�̅�) from the original distribution and the meta-analytic mean 

estimate after the removal of identified outlier(s) as well as the 14 estimates from our battery of 

sensitivity analyses before and after the removal of outliers. Publication bias was considered to 

be a source of non-robustness if (a) the difference between the naïve meta-analytic mean and the 

publication bias analyses before or after the removal of outliers was at least .02 in its magnitude 

and greater than 20% or (b) the difference between the meta-analytic mean estimate after outlier 

removal and the estimates the publication bias analyses before or after the removal of outliers 

was at least .02 in its magnitude and greater than 20%. Outliers were considered to contribute to 

the non-robustness of a naïve meta-analytic mean estimate to a noticeable degree if (a) the 

difference between the naïve meta-analytic mean estimate, the meta-analytic mean before the 

removal of identified outlier(s), and any of the osr analyses prior to the removal of outliers was at 

least .02 in its magnitude and greater than 20%, or (b) the difference between the naïve meta-

analytic mean estimate and the meta-analytic mean after the removal of identified outlier(s) was 

at least .02 in its magnitude and greater than 20%. A combined effect of outliers and publication 

bias was considered to contribute to the observed non-robustness if the difference between the 

naïve meta-analytic mean before outlier removal and any estimate of our sensitivity analysis (i.e., 

osr analysis or publication bias analyses) after the removal of outliers was at least .02 in its 

magnitude and greater than 20%.
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RESULTS

Table 1 contains the results from our meta-analytic and sensitivity analyses for one meta-

analytic study. The top part of the table displays the results for the original distributions; the 

bottom part contains the results with the identified outliers removed. The first three columns in 

Table 1 report what distribution was analyzed as well as its number of its effect sizes (k) and 

individual observations (N). Columns 4-10 show the naïve meta-analytic results, including the 

random-effects (RE) meta-analytic mean (the naïve mean; �̅�), the 95% confidence interval (95% 

CI), the 90% prediction interval (90% PI), Cochran’s Q, I2, tau (τ), and the osr analysis (osr �̅�; 

minimum, maximum, and median �̅� estimates). Columns 11-18 display the results from the trim

and fill analyses; for the recommended fixed-effects (FE) as well as the RE model, respectively. 

For each model, the table includes the side of the funnel plot on which the imputed samples are 

located (FPS), the number of imputed effect sizes (ik), the respective trim and fill adjusted mean 

effect size (t&fFE �̅� or t&fRE �̅�), and the corresponding 95% CI. Column 19 contains the 

cumulative mean for the five most precise samples (pr5 �̅�). Columns 20 and 21 contain the 

results from the moderate (smm �̅�) and severe selection (sms �̅�) models. Finally, column 22 

contains the result of the PET-PEESE (pp �̅�) analysis. Due to space limitations, our discussion 

focuses on two distributions from one meta-analytic study, the study by Karlin, Zinger and Ford 

(2015). Although we did not include all funnel and forest plots due to space considerations, we 

have included the ones relevant to the discussed distributions. A summary of results for all nine 

meta-analyses is also provided.

Robustness of Karlin et al.’s (2015) Meta-analytic Results

Table 1 contains the results for the meta-analytic study by Karlin et al. (2015), which 

assessed the effects of feedback on performance, as measured by energy conservation. The 
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Overall effect was estimated to be .04 (k = 42), indicating that, in general, feedback has a small 

but positive effect on performance (i.e., energy consumption). However, this estimate is unlikely 

to be robust, as indicated by the results from our PB methods. The FE trim and fill model 

imputed 12 effect sizes on the left side of the distribution (see Figure 2a, left panel). 

Consequently, the mean estimate was adjusted downward to .02 ( = .02 or 50%). The estimate 

from the RE trim and fill model was even further away from the naïve meta-analytic mean (t&fRE 

�̅� = -.01;  = .05 or 125%) and the estimates from the moderate selection model (smm	�̅� = .01, 

= .03 or 75%) as well as the PET-PEESE model (pp	�̅� = .03,  = .01 or 25%) were in close 

proximity to the FE trim and fill estimate. Only the cumulative mean estimate of the five most 

precise samples suggested that the naïve meta-analytic mean could be underestimated (pr5	�̅�

= .05,  = .01 or 25%). The forest plot of the cumulative meta-analysis showed a sharp 

discontinuity after around half of the effect sizes were added (see Figure 2a, right panel), 

suggesting a non-robust naïve mean. The severe selection model did not provide a credible mean 

estimate. These findings could be partly due to the relatively large degrees of heterogeneity (90% 

PI = -.07, .16; Q = 814.81; I2 = 94.97,  = .07). The contour-enhanced funnel plot showed the 

effect size that is the likely culprit of the discontinuity and the large degree of heterogeneity (see 

Figure 3a). In combination with the varying osr estimates, this effect size as well as others could 

be outliers.

We identified five outliers in the distribution and removed them. Consequently, the 

amount of heterogeneity decreased noticeably (90% PI = .01, .16; Q = 50.54; I2 = 28.78;  = .05) 

and the adjusted mean was estimated to be .09, .05 (125%) larger in magnitude than the original 

naïve mean estimate. All but one PB method yielded relatively consistent adjusted mean 

estimates, either .07 (t&fFE �̅�, t&fRE �̅�, and smm �̅�;  = .03 or 75%) or .05 (pr5 �̅� and sms �̅�; 
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= .01 or 25%). The contour-enhanced funnel plot as well as the cumulative meta-analysis by 

precision supported these findings (see Figure 2b, left panel). Only the PET-PEESE estimate did 

not converge with these results (pp �̅� = .01,  = .03 or 75%). Excluding this latter estimate, our 

results suggested that the originally estimated naïve meta-analytic mean of .04 is somewhat 

underestimated due to PB and outliers. According to our results, the ‘true’ underlying observed 

mean for the effect of feedback on energy consumption is likely to be somewhat larger in 

magnitude than the originally estimated .04, probably around .06 ( = .02 or 55%).

As another example, the naïve meta-analytic mean for effect sizes from studies where the 

feedback frequency was continuous (Treatment variables: Feedback frequency: Continuous, k = 

17) was estimated to be .05 and the data appeared to be very heterogeneous (90% PI = -.46, .54;

Q = 368.57; I2 = 95.66;  = .33). Both trim and fill models (t&fFE �̅� = -.05,  = .10 or 200%; 

t&fRE �̅� = -.07,  = .12 or 240%) as well as the moderate selection model (smm �̅� = -.04,  = .09 

or 180%) yielded results of similar magnitude but in the opposite direction to the naïve mean. 

This suggests the presence of rather severe bias. However, the cumulative mean estimate of the 

five most precise samples (pr5 �̅� = .07,  = .02 or 40%) suggested that the naïve mean was 

somewhat underestimated while, once again, the PET-PEESE estimate (pp �̅� = -.37,  = .42 or 

840%) did not converge well with any of the other results. Similar to the previously discussed 

distribution from Karlin et al. (2015), the forest plot depicting the cumulative meta-analysis 

showed a sharp discontinuity (see Figure 2c, right panel). The contour-enhanced funnel plot (see 

Figure 2c, left panel) showed the culprit of the discontinuity and the widely varying osr estimates 

suggested that outliers have a noticeable influence on the obtained results, which is also 

supported by the large degrees of heterogeneity. 
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After the removal of one identified outlier (k = 16), the distribution was substantially less 

heterogeneous (90% PI = -.01, .18; Q = 23.15; I2 = 36.15;  = .05) and the for outlier adjusted

mean was estimated to be .09 ( = .04 or 80%). All but one PB method yielded very similar but 

somewhat smaller magnitude results (t&fFE, t&fRE �̅�, pr5 �̅�, and smm �̅� = .07,  = .02 or 40%; 

sms �̅� = .06  = .01 or 20%). The funnel plot distribution was more symmetrical and the forest 

plot depicting the cumulative meta-analysis by precision did not contain the discontinuity (see 

Figure 2d, left and right panel respectively). Still, the positive drift of the cumulative mean in the 

forest plot suggested that PB is present in this distribution and, therefore, supported the 

aforementioned findings. But once again, the PET-PEESE estimate (pp �̅� = -.02,  = .07 or 

140%) did not converge with the results of the other PB methods. Taken together and excluding 

the PET-PEESE estimate, we concluded that the original naïve meta-analytic mean of .05 was 

underestimated; that the ‘true’ underlying observed mean is likely to be slightly larger in 

magnitude, potentially around .07 ( = .02 or 36% when compared to the originally estimated 

naïve meta-analytic mean).

----------------------------------------------------------------
Insert Tables 1 and 2 and Figures 2 and 3 about here

-----------------------------------------------------------------

Table 2 summarizes our results regarding the robustness of Karlin et al.’s (2015) naïve 

meta-analytic mean estimates. Not surprisingly, given the results displayed in Table 1, all of 

these estimates seemed to be non-robust. According to our guidelines, at least one of the three 

range estimates indicated a ‘large’ (i.e., > 40%) difference for all 14 distributions. Furthermore, 

for over a third of the distributions (36%, 5/14), all three range estimates indicated that there was 

a ‘large’ difference. We also determined that outliers contributed to the non-robustness in 71% of 

the distributions (10/14) and PB was a cause in the observed non-robustness in all instances 
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(100%, 14/14). A combined effect was observed in 10 distributions (71%). Therefore, outliers, 

PB, and their interaction had relatively similar distorting effects on the naïve mean estimate. Put 

differently, errors of exclusion (i.e., PB), errors of inclusion (i.e., outliers), and a combination of 

both seem to have affected the naïve mean estimates.

Figure 3 shows the dispersion of the naïve meta-analytic mean effect size and the 

estimates from the battery of sensitivity analyses, before and after outlier removal (when 

applicable). It can be seen that the mean estimates for several meta-analytic distributions (e.g., 

Treatment variables: Feedback frequency: Continuous, Treatment variables: Feedback medium: 

Monitor, and Treatment variables: Comparison message: No comparison message) are widely 

dispersed. By contrast, the estimates from other distributions (e.g., Treatment variables: 

Feedback medium: Card, Treatment variables: Comparison message: No comparison message, 

and Treatment variables: Feedback duration – 3-6 month) converged well and are thus are 

clustered together. Therefore, the naïve meta-analytic mean estimates for the former distributions 

are likely to be non-robust and the naïve means for the latter distributions are likely to be robust. 

Consequently, our cumulative knowledge pertaining to the former distributions is unlikely to be 

trustworthy but our cumulative knowledge pertaining to the latter distributions is likely to be 

trustworthy.

Summary of All 123 Distributions

Table 3 summarizes the results of all nine meta-analytic studies and the 123 distributions 

we re-analyzed. The first two columns contain some general information about each meta-

analytic study; the citation of the study and the number of the distributions we re-analyzed. 

Columns three and four display the number of the of the robust and non-robust estimates we 

obtained (differences greater than or equal to 20% between the naïve meta-analytic mean and 
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any one estimate from our sensitivity analyses were classified as non-robust; see the robustness 

tables). Columns five through seven show the cause of the observed non-robustness. 

Specifically, they illustrate for how many distributions PB, outliers, or their interaction 

contributed to the observed non-robustness. Finally, the last two columns display the number of 

distributions that exhibited ‘moderate’ (i.e., > 20%) and ‘severe’ (i.e., > 40%) non-robustness. 

We derived these numbers by adding the instances in which the overall conclusion from the 

robustness table associated with a meta-analytic study included the terms ‘moderate’ and ‘large.’ 

Hence, an overall conclusion of ‘negligible to large differences’ (or ‘moderate to large 

differences’) added an instance of one to the ‘moderate’ and ‘severe’ degrees of non-robustness. 

Conversely, an overall conclusion of a ‘large difference’ added an instance of one to the ‘severe’ 

degree of non-robustness column in Table 3. This explains why the sum of these numbers is 

unequal to the number shown in column four, our estimate for the number of non-robust naïve 

meta-analytic mean estimates. We did this because the three range estimates (ARE, BRE, and 

MRE) frequently reached different conclusions. Specifically, given how the ARE was calculated, 

it tended to provide a conclusion of a ‘negligible’ bias much more frequently than the other two 

range estimates. In the spirit of triangulation and to provide the most transparent and accurate 

overall conclusion, we considered all three range estimates rather than just one upon which to

base our conclusion.

As can be seen from the table, only a few of the obtained naïve meta-analytic mean 

estimates were robust. For example, the naïve mean estimates for all 23 distributions of Judge et 

al.’s (2001) meta-analytic study were classified as being non-robust. Outliers contributed to this 

observed non-robustness in two distributions (2/23, 9%); PB was a factor in almost all of the 

distributions (22/23, 96%; their combined effect was noted in about three-quarters of the 
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distributions (17/23, 74%). Maybe most importantly, the observed non-robustness was classified 

as being ‘severe’ in most of the instances (21/23, 91%). Therefore, the cumulative knowledge 

related to this meta-analytic study is unlikely to be trustworthy. With regard to the previously 

discussed meta-analytic study, we can see that Karlin et al.’s (2015) study did not contain any

mean estimates that can be categorized as robust. Specifically, 71% (10/14) of the reanalyzed 

distributions were noticeably affected by the presence of outliers, almost all of the distributions 

were affected by PB (13/14, 93%), and a combined effect of outliers and PB was noted in 10 of 

the distributions (10/14, 71%). Consequently, all (14/14, 100%) of the obtained naïve mean 

estimates were non-robust to a potentially ‘severe’ degree.

Overall, the naïve meta-analytic mean estimates for the vast majority of distributions in 

the meta-analytic studies we re-analyzed were classified as being non-robust (i.e., 108/123, 

88%). Conversely, the naïve mean estimates of only 12% of the distributions (15/123) were 

deemed robust. Outliers contributed to the observed non-robustness in 24% (30/123) of the naïve 

means, PB in 88% (108/123), and their combined effect in 46% (56/123). Maybe most 

importantly, the degree of non-robustness was classified as being severe (i.e., > 40%) in over 

three-fourths (78%, 96/123) of the naïve mean estimates. Therefore, one may be able to conclude 

that our cumulative knowledge derived from the analyzed meta-analytic distributions is unlikely 

to be trustworthy in the vast majority of the distributions, which should be of major concern.

Detailed results tables, robustness tables, and relevant figures for all nine meta-analyses are

available upon request. 

------------------------------------------
Insert Table 3 about here

-------------------------------------------
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DISCUSSION

The cumulation of research findings in recent years suggests that factors related to our 

scientific process may have had adverse effects on the trustworthiness of our cumulative 

knowledge. Of particular interest have been PB and outliers because both of these phenomena 

have been found to distort meta-analytic mean estimates and related statistics (Banks et al., 2015; 

Viechtbauer & Cheung, 2010). Unfortunately, most published meta-analyses in our sciences tend 

to ignore the potential threat stemming from PB and outliers. Therefore, one of our goals was to 

attain a sound estimate regarding the presence and severity of PB and outliers in meta-analyses 

in the area of learning, behavior, and performance. In addition, we sought to know which of the 

two phenomena has the greater effect on any observed non-robustness, and, therefore, is 

contributing more to the perceived crisis of confidence in our sciences (e.g., Earp & Trafimow, 

2015). In our attempt to answer these and related questions, we also verified empirically whether 

one of these phenomena (e.g., outliers or errors of inclusion) can distort the results of methods to 

assess the presence of the other (e.g., PB or errors of exclusion). We address these and related 

issues next.

How Robust are Our Naïve Meta-analytic Results in the Literature Area of Learning, 

Behavior, and Performance and What Causes Any Observed Non-robustness?

To provide an accurate estimate of the presence and amount of PB and outliers in the 

literature area of learning, behavior, and performance we re-analyzed relevant publicly available 

datasets of nine meta-analytic studies with 123 meta-analytic distributions containing at least 10 

effect sizes published in Psychological Bulletin between 2000 and 2015. Overall, we found that 

the vast majority (88%, 108/123) of the originally reported naïve meta-analytic means were non-

robust. 
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With regard to our next question, which of the two examined phenomena, PB or outliers, 

had the greater distorting effect, we found that PB tended to have vastly greater adverse effects.

Although we observed outliers to have affected 24% (30/123) of the naïve meta-analytic mean 

estimates, PB affected almost four times as many naïve mean estimates (88%, 108/123). In other 

words, according to our results, errors of exclusion (i.e., PB) tended to have a substantially larger 

distorting effect than errors of inclusion (i.e., outliers), providing credence to the notion that PB 

may present one of the greatest threats to the validity of meta-analytic results (Rothstein, Sutton 

& Borenstein, 2005a).

We also observed a combined effect of PB and outliers in roughly a third of the 

distributions (46%, 56/123). This finding is interesting as this rate of occurrence is larger in 

magnitude than the one for outliers alone. It seems as if both of these phenomena can have an 

interactive effect that may go beyond the main effect of outliers. Thus, we can conclude that both 

PB and outliers as well as their combined effect contributed to the high frequency and degrees of 

misestimation and non-robustness of the naïve meta-analytic mean estimates. 

Do Outliers Distort Results of Publication Bias Analyses?

Just as with meta-analytic methods, many PB methods are sensitive to heterogeneity. 

Therefore, we not only wanted to know whether outliers can distort naïve meta-analytic mean 

estimates, but also whether outliers affect results from PB methods. Here, our results are based 

on the 72 distributions for which we obtained results before and after the removal of outliers. 

First, we observed that, as expected, the removal of outliers tended to reduce the observed 

heterogeneity, as indicated by the typically smaller values Q, I2, and τ as well as the narrowing of 

the 90% PI, when compared to the distributions before outlier removal. Next, we assessed the 

frequency to which each of our PB methods yielded the same results before and after removal of 
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outliers (see Table 4). From the table, it can be seen that the magnitude of the naïve meta-

analytic mean remained the same after outlier removal in only 6% (4/72) of the distributions. The 

estimates from the RE trim and fill model (14%, 10/72), PET-PEESE (7%, 5/72), and both 

selection models (14%, 10/72; 3%, 2/72) are similar in magnitude. 

-----------------------------------------

Insert Table 4 about here
-------------------------------------------

The estimates from the FE trim and fill model seem to be substantially less affected by 

outliers as the rate of agreement before and after outlier removal is noticeably larger in 

magnitude (32%, 23/72). The estimate from the five most precise samples (pr5 �̅�) is more than 

twice as large (65%, 47/72). Therefore, it seems to be the method most robust to the influence of 

outliers. By contrast, the RE trim and fill model, both selection models, and PET-PEESE do not 

seem to be robust to the influence of outliers. Regardless, even agreements of 32% or 65% do

not seem large enough to have confidence in the accuracy of PB results before the removal of 

outliers. We thus recommend that outliers are taken into account when estimating a meta-

analytic mean and as well as the effect of PB on it. In brief, we clearly demonstrate that outliers 

can distort meta-analytic and PB analyses results. 

Implications for Research and Practice

Based on our study, several implications for research and practice can be discerned. 

Maybe most importantly, our results unambiguously indicated that both PB and outliers can 

affect naïve mean estimates and related statistics and, therefore, the robustness of meta-analytic 

results and the trustworthiness of the associated conclusions and recommendations (see Table 3).

Furthermore, both phenomena, PB and outliers, seemed to have an interactive effect on the 

robustness of obtained naïve results. Our findings even indicated that this combined effect is 
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likely to be larger in magnitude than the effect of outliers alone (see Table 3). Consequently, one 

should account for both phenomena when conducting a meta-analytic study. Without such a 

comprehensive assessment of obtained results, their robustness is unknown and, therefore, the 

delineated recommendations for future research and practice may be misleading if not erroneous. 

Consequently, a literature area may not be trustworthy. 

With regard to the use of particular methods, the Meta-analysis Reporting Standards do 

not recommend any particular one (APA, 2008). Based on our study, we can provide more 

specific recommendations. We calculated the convergence rates of the results from the different 

methods to assess PB (see Table 4). The table illustrates convergence rates before and after 

outlier removal. It shows the frequency in which each method yielded a ‘negligible,’ ‘moderate,’

or ‘severe’ difference before and after outlier removal. In addition, the middle part of the table 

displays the inter-PB detection method convergence rates across the three levels of practical 

difference before and after outlier removal. As can be seen from the middle part of the table, 

convergence rates between the results tended to increase following outlier removal.

Overall, convergence (after outlier removal) was highest between the results from the FE 

and RE trim and fill model (86%), the FE trim and fill model and the estimate from the moderate 

selection model (64%), the RE trim and fill model and the moderate selection model (66%), the

RE trim and fill model and the moderate selection model (63%), and the RE trim and fill model 

and the PET-PEESE estimate (63%). Therefore, it is a combination of these empirical methods 

that we recommend for future research. Specifically, in addition to the naïve meta-analytic mean 

(i.e., �̅�), we recommend the use of, at a minimum, the recommended FE trim and fill as well as 

the RE trim and fill model, the moderate selection model, and the PET-PEESE estimate to 

triangulate the likely location of the most robust estimate of the ‘true’ meta-analytic effect size.
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However, it is important to note that the performance of PET-PEESE varied widely between 

meta-analyses and distributions. For instance, although we included the PET-PEESE estimate in 

our calculations of the ARE, BRE, and MRE, we excluded it from our overall conclusions (i.e., 

our estimate of the “true” effect size) in both distributions we discussed from Karlin et al.’s

(2015) meta-analytic study because of its lack of convergence with the other estimates. Thus, our 

general recommendations may need to be adapted/adjusted to the particular distributions 

analyzed. In addition to these methods, we recommend the use of two graphical methods, the 

funnel plot to examine the distribution and the forest plot to display the cumulative meta-analysis 

by precision. To provide more generalizable recommendations, we echo prior research and 

recommend that future simulation studies assess the performance of PB methods under various 

conditions (e.g., number of effect sizes and degree of heterogeneity; Kepes et al., 2012; Kepes & 

McDaniel, 2015).

We also have recommendations related to practice. Because meta-analytic reviews are 

potentially the most important tool for advancing evidence-based practice, practitioners should 

be aware that phenomena such as PB and outliers can adversely affect meta-analytic results. 

Therefore, they may want to influence researchers, especially journal editors, to ensure that 

future meta-analytic studies include the results of comprehensive sensitivity analyses to assess 

the robustness of the reported naïve meta-analytic results as well as the trustworthiness of the 

associated conclusions and recommendations. Relatedly, we suggest that practitioners be 

skeptical about implementing interventions recommended by studies that did not include 

sensitivity analyses and always collect their own data post-intervention to ensure that the 

intervention is functioning as proposed. 

Limitations and Future Research
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As is the case in every study, our study has limitations. First, the trustworthiness of meta-

analytic results in the area of learning, behavior, and performance is not solely predicated on the 

meta-analytic studies published in Psychological Bulletin (or any other particular journal). We 

selected Psychological Bulletin because of its visibility and prominence. Because of this, we 

thought that the review process at this journal is likely more thorough when compared to other 

journals. Hence, we reasoned that meta-analytic studies in this journal may be considered to be 

among the best in the area of learning, behavior, and performance.

Second, one may question the adequacy of one or more of the methods we used, 

especially because the methods did not yield identical results. Contrary to this view, we see this 

as a strength of our study. We argue that is bad practice to rely on just one PB detection method 

to come to conclusions regarding the robustness of the naïve results. Instead, aligned with the 

concept of triangulation (Jick, 1979), when trying to estimate the location of the ‘true’

underlying effect size, it has been recommended to use several methods, especially ones that rely 

on different statistical assumptions, to increase one’s confidence that the obtained results are not 

due to one particular methodological approach (Kepes & McDaniel, 2015). Inevitably, such an 

approach with multiple methods will yield differing results.

Relatedly, the fact that some methods to assess PB did not yield credible results may be 

viewed as a limitation. For instance, the results of the severe selection model estimate were 

regularly not credible and thus omitted from the results table. This is likely due to inflated 

variance estimates associated with their respective mean estimate (Kepes et al., 2012; Vevea & 

Woods, 2005). Clearly, more research is needed to understand the situations under which this 

selection model does not perform well, especially because Vevea and Woods (2005)

recommended the severe selection model in particular. 
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Conclusion

Literature in the area of learning, behavior, and performance, as summarized in nine

meta-analyses with 123 distributions containing at least 10 effect sizes published in 

Psychological Bulletin, is largely not trustworthy. This literature suffers from errors of exclusion 

(distorted results due to publication bias) and errors of inclusion (distorted results due to 

inclusion of outliers). Therefore, some of the concerns regarding the credibility crisis in 

psychology seem to be justified. To regain its status as a trustworthy scientific discipline, it 

seems as if both primary and meta-analytic research in management and applied psychology 

needs to revise its practices. 
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TABLE 1
Meta-analytic and Sensitivity Analysis Results for Karlin et al.’s (2015) Meta-analytic Dataset

Meta-analysis Publication bias analyses

Trim and fill
CMA

Selection 
models

PET-

PEESEFE trim and fill RE trim and fill

Distribution k N ��̅ 95% CI 90% PI Q I2  osr ��̅ FPS ik
t&fFE

��̅

t&fFE

95% CI
FPS ik

t&fRE

��̅

t&fRE

95% CI
pr5 ��̅ smm ��̅ sms ��̅ pp ��̅

Original distributions

Overall effect 42 256536 .04 .01, .08 -.07, .16 814.81 94.97 .07 .04, .07, .04 L 12 .02 -.01, .05 L 18 -.01 -.04, .02 .05 .01 n/a .03

Treatment variables

- Feedback frequency

- Continuous 17 3744 .05 -.11, .21 -.46, .54 368.57 95.66 .33 .03, .09, .05 L 7 -.05 -.19, .08 L 7 -.07 -.21, .07 .07 -.04 n/a -.37

- Feedback medium

- Card 15 2772 .08 .03, .13 .00, .15 17.20 18.61 .04 .07, .09, .08 L 4 .05 -.01, .11 L 4 .05 -.01, .11 .06 .06 .04 .03

- Monitor 16 3734 .04 -.13, .20 -.47, .53 368.83 95.93 .33 .02, .09, .04 L 7 -.08 -.21, .06 L 7 -.09 -.23, .05 .07 n/a n/a -.38

- Energy measurement 

- kWh and cost 23 251454 .07 .03, .10 -.02, .15 428.49 94.87 .05 .02, .08, .06 L 8 .04 .01, .08 L 6 .05 .01, .08 .04 .05 .04 .04

- Comparison message

- No comparison 17 4240 .02 -.13, .17 -.46, .49 367.97 95.65 .30 .01, .08, .02 L 7 -.08 -.20, .04 L 7 -.09 -.21, .03 .07 -.07 n/a -.37

- Comparison message 13 79755 .08 .01, .15 -.05, .20 23.95 49.89 .07 .05, .12, .08 L 6 .01 -.06, .08 L 6 .01 -.06, .08 .05 .06 .01 .01

- Comparison

- Comparison goal

- No goal comparison 38 256343 .04 .01, .07 -.07, .15 803.35 95.39 .07 .03, .07, .04 L 10 .02 -.01, .05 L 17 -.02 -.05, .00 .05 -.01 n/a .03

- Combined intervention

- Feedback only 34 255087 .06 .03, .09 -.02, .15 446.82 92.61 .05 .04, .07, .06 L 9 .05 .02, .07 L 6 .05 .03, .08 .05 .05 .04 .04

- Energy granularity

- Whole home 38 255631 .04 .01, .07 -.07, .15 807.54 95.42 .07 .03, .07, .04 L 10 .01 -.02, .04 L 17 -.03 -.06, .00 .05 .00 n/a .03

- Feedback duration

- 3-6 months 10 2721 .05 .01, .10 -.03, .14 13.48 33.23 .04 .04, .07, .05 R 1 .06 .01, .11 R 1 .06 .01, .11 .07 .04 n/a .09

- 6-12 months 11 249200 -.04 -.09, .01 -.16, .08 761.64 98.69 .07-.07, .05, -.05 -.04 -.09, .01 -.04 -.09, .01 .03 -.12 n/a .05

Publication bias

- Sample size

- <300 26 2295 .11 -.06, .27 -.53, .67 388.68 93.57 .42 .10, .14, .11 L 12 -.10 -.24, .04 L 11 -.01 -.14, .12 -.15 .02 n/a -.54

- >300 16 254241 .05 .02, .08 -.04, .13 421.20 96.44 .05 .03, .05, .05 L 2 .04 .01, .07 .05 .02, .08 .05 .04 n/a .04

Distributions without outliers

Overall effect 37 7491 .09 .06, .12 .01, .16 50.54 28.78 .05 .08, .09, .09 L 9 .07 .03, .10 L 9 .07 .03, .10 .05 .07 .05 .01

Treatment variables
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Meta-analysis Publication bias analyses

Trim and fill
CMA

Selection 
models

PET-

PEESEFE trim and fill RE trim and fill

Distribution k N ��̅ 95% CI 90% PI Q I2  osr ��̅ FPS ik
t&fFE

��̅

t&fFE

95% CI
FPS ik

t&fRE

��̅

t&fRE

95% CI
pr5 ��̅ smm ��̅ sms ��̅ pp ��̅

- Feedback frequency

- Continuous 16 3475 .09 .04, .13 -.01, .18 23.49 36.15 .05 .08, .10, .08 L 5 .07 .02, .11 L 4 .07 .03, .12 .07 .07 .06 -.02

- Feedback medium

- Card No outliers detected

- Monitor 15 3465 .09 .04, .13 -.01, .19 23.52 40.47 .06 .08, .10, .09 L 4 .07 .02, .12 L 3 .07 .02, .12 .07 .07 .06 -.02

- Energy measurement 

- kWh and cost 13 770 .15 .08, .22 .09, .21 7.36 .00 .00 .14, .17, .15 .15 .08, .22 .15 .08, .22 .17 .13 .11 .16

- Comparison message

- No comparison 16 3971 .08 .04, .12 .00, .15 21.23 29.33 .04 .07, .09, .08 L 3 .06 .02, .10 L 3 .06 .02, .10 .07 .06 .04 .01

- Comparison message No outliers detected

- Comparison

- Comparison goal

- No goal comparison 33 7298 .08 .05, .11 .01, .14 41.63 23.13 .04 .07, .08, .08 L 7 .07 .04, .10 L 7 .07 .04, .10 .05 .06 .05 .02

- Combined intervention

- Feedback only 26 4112 .06 .02, .09 -.02, .13 31.72 21.18 .04 .05, .06, .06 L 7 .04 -.01, .08 L 7 .04 -.01, .08 .02 .04 .02 -.05

- Energy granularity

- Whole home 34 7870 .08 .05, .11 .00, .15 46.45 28.95 .04 .07, .08, .08 L 8 .06 .03, .09 L 8 .06 .03, .09 .05 .06 .05 .02

- Feedback duration

- 3-6 months No outliers detected

- 6-12 months No outliers detected

Publication bias

- Sample size

- <300 22 1401 .17 .11, .22 .12, .21 15.87 .00 .00 .16, .18, .17 L 1 .16 .11, .21 L 1 .16 .11, .21 .19 .15 .12 .16

- >300 11 5676 .04 .02, .07 .01, .08 10.93 8.54 .01 .04, .05, .04 R 1 .05 .02, .07 R 1 .05 .02, .07 .04 .04 .01 .09

Note. k = number of correlation coefficients in the analyzed distribution; N = meta-analytic sample size; ��̅ = random-effects weighted mean observed correlation; 95% CI = 95% confidence interval; 
90% PI = 90% prediction interval; Q = weighted sum of squared deviations from the mean; I2 = ratio of true heterogeneity to total variation; τ = between-sample standard deviation; osr ��̅= one-sample 
removed observed means, including the minimum and maximum observed mean as well as the median observed mean; Trim-and-fill = trim-and-fill analysis; FPS = funnel plot side (i.e., side of the 
funnel plot where samples were imputed; L = left, R = right); ik = number of trim-and-fill samples imputed; t&fFE ��̅ = fixed-effects trim and fill adjusted observed mean; t&fFE 95% CI = fixed-effects 
trim and fill adjusted 95% confidence interval; t&fRE ��̅ = random-effects trim-and-fill adjusted observed mean; t&fRE 95% CI = random-effects trim-and-fill adjusted 95% confidence interval; CMA = 
cumulative meta-analysis; pr5 ��̅ = cumulative meta-analytic mean estimate of the five most precise effects; smm ��̅ = one-tailed moderate selection model’s adjusted observed mean; sms ��̅ = one-tailed 
severe selection model’s adjusted observed mean; PET-PEESE = precision-effect test-precision effect estimate with standard error; PET-PEESE ��̅ = PET-PEESE adjusted observed mean; n/a = not 
applicable (sms ��̅ was non-credible due to an inflated variance estimate; Vevea & Woods, 2005).
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TABLE 2
Robustness of Karlin et al.’s (2015) Naïve Meta-analytic Mean Estimates and Conclusions of the Sensitivity Analyses

Distribution
Average 

value
Lowest 
value

Highest 
value

��̅

ARE BRE MRE
O PB O+PB

Overall 
conclusionValue % Conclusion Value % Conclusion Value % Conclusion

Overall effect .05 -.01 .09 .04 .01 Negligible .05 125% Large .10 250% Large Yes Yes Yes Negligible to large 
differences

Treatment variables: Feedback 
frequency: Continuous

.01 -.37 .09 .05 .04 80% Large .42 840% Large .46 920% Large Yes Yes Yes Large differences

Treatment variables: Feedback 
medium: Card

.06 .03 .08 .08 .02 Negligible .05 63% Large .05 63% Large No Yes No Negligible to large 
differences

Treatment variables: Feedback 
medium: Monitor

.00 -.38 .09 .04 .04 100% Large .42 1050% Large .47 1175% Large Yes Yes Yes Large differences

Treatment variables: Energy 
measurement: kWh and cost

.10 .04 .17 .07 .03 43% Large .10 143% Large .13 186% Large Yes Yes Yes Large differences

Treatment variables: 
Comparison message: No 
comparison message

.00 -.37 .08 .02 .02 Negligible .39 1950% Large .45 2250% Large Yes Yes Yes Negligible to large 
differences

Treatment variables: 
Comparison message: 
Comparison message

.04 .01 .08 .08 .04 50% Large .07 88% Large .07 88% Large Yes Yes No Large differences

Treatment variables: Goal 
comparison: No goal 
comparison

.04 -.02 .08 .04 .00 Negligible .06 150% Large .10 250% Large Yes Yes Yes Negligible to large 
differences

Treatment variables: 
Combination intervention: 
Feedback only

.04 -.05 .06 .06 .02 Negligible .11 183% Large .11 183% Large No Yes Yes Negligible to large 
differences

Treatment variables: Energy 
granualarity: Whole home

.04 -.03 .08 .04 .00 Negligible .07 175% Large .11 275% Large Yes Yes Yes Negligible to large 
differences

Treatment variables: Feedback 
duration - 3-6 months

.06 .04 .09 .05 .01 Negligible .04 80% Large .05 100% Large No Yes No Negligible to large 
differences

Treatment variables: Feedback 
duration - 6-12 months

-.03 -.12 .05 -.04 .01 Negligible .09 225% Large .17 425% Large Yes Yes No Negligible to large 
differences

Publication bias: Sample size: < 
300

.05 -.54 .19 .11 .06 55% Large .65 591% Large .73 664% Large Yes Yes Yes Large differences

Publication bias: Sample size: > 
300

.05 .01 .09 .05 .00 Negligible .04 80% Large .08 160% Large No Yes Yes Negligible to large 
differences

Note: Average value = average mean estimate from all analyses, with the exception of the osrmin ��̅ and osrmax ��̅ 	estimates; Lowest value = lowest mean estimate from all analyses, with the exception of 
the osrmin ��̅ and osrmax ��̅ 	estimates; Highest value = highest mean estimate from all analyses, with the exception of the osrmin ��̅ and osrmax ��̅ 	estimates; ��̅ = random-effects weighted mean observed 
correlation from the distribution with outliers included; ARE = average range estimate: the absolute range between ��̅ 	and the average value; BRE = Baseline range estimate: the absolute range between 
��̅ 	and the estimate farthest away (either the lowest or highest value); MRE = Maximum range estimate: the absolute range between the lowest or highest value; When calculating the relative difference 
of the range estimates, we used the ��̅ from the original distribution, the potentially best mean estimate, as the base. We note that, in many instances, the moderate and severe selection models (smm��̅ 	and 
sms��̅) provided nonsensical estimates. We chose to omit these estimate in such instances in order to provide the most conservative estimates of ARE, BRE and MRE. 
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TABLE 3
Summary of the Results

Author(s)
Distribu-

tions 
analyzed

Robust 
naïve mean 
estimates

Non-robust 
naïve mean 
estimates

Naïve mean estimates affected by Degree of non-robustness

outliers
publication 

bias
outliers and 

pub. bias
moderate severe

All distributions 123 15 (12%) 108 (98%) 21 (17%) 108 (98%) 56 (46%) 105 (85%) 96 (78%)

1. Cerasoli, Nicklin and Ford (2014) 4 0 (0%) 4 (100%) 0 (0%) 4 (100%) 4 (100%) 4 (100%) 2 (50%)

2. Glasman and Albarracín (2006) 25 7 (28%) 18 (72%) 0 (0%) 18 (72%) 3 (12%) 22 (88%) 9 (36%)

3. Judge et al. (2001) 23 0 (0%) 23 (100%) 2 (9%) 22 (96%) 17 (74%) 23 (100%) 21 (91%)

4. Karlin et al. (2015) 14 0 (0%) 14 (100%) 10 (71%) 13 (93%) 10 (71%) 9 (64%) 14 (100%)

5. Lee, Park and Koo (2015) 6 0 (0%) 6 (100%) 0 (0%) 6 (100%) 0 (0%) 6 (100%) 6 (100%)

6. Noar, Benac and Harris (2007) 13 5 (38%) 8 (62%) 1 (8%) 8 (62%) 6 (46%) 9 (69%) 10 (77%)

7. Randall, Oswald and Beier (2014) 17 0 (0%) 17 (100%) 3 (18%) 17 (100%) 10 (59%) 15 (88%) 15 (88%)

8. Robbins, Lauver, Le, Davis, 
Langley and Carlstrom (2004)

12 3 (25%) 9 (75%) 1 (8%) 11 (92%) 3 (25%) 12 (100%) 11 (92%)

9. Vachon, Lynam and Johnson 
(2014)

9 0 (0%) 9 (100%) 4 (44%) 9 (100%) 3 (33%) 5 (56%) 8 (89%)

Note: Mean estimates were considered non-robust if the BRE and MRE indicated ‘moderate’ or ‘severe’ bias. The degree of non-robustness was based on the 
range of the ARE, BRE, and MRE. Hence, an “overall conclusion” of ‘negligible to large differences’ (or ‘moderate to large differences’) added an instance of 
one to the ‘moderate’ and ‘severe’ degrees of non-robustness columns. Conversely, an “overall conclusion” of a ‘large difference’ added an instance of one to the 
‘severe’ degree of non-robustness column.
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TABLE 4
Agreement Between Mean Estimates Before and After Outlier Removal

Author(s) �̅� t&fFE �̅� t&fRE �̅� pr5 �̅� smm �̅� sms �̅� pp �̅�

All distributions 5 (7%) 23 (32%) 10 (14%) 47 (65%) 10 (14%) 2 (3%) 5 (7%)

1. Cerasoli et al. (2014) 0 (%) 3 (75%) 0 (%) 3 (75%) 1 (25%) 1 (33%) 1 (25%)

2. Glasman and Albarracín (2006) 0 (%) 3 (60%) 2 (40%) 3 (60%) 0 (%) 0 (%) 1 (20%)

3. Judge et al. (2001) 1 (5%) 7 (33%) 1 (5%) 18 (86%) 3 (14%) 0 (%) 0 (%)

4. Karlin et al. (2015) 1 (10%) 0 (%) 1 (10%) 6 (60%) 1 (10%) 0 (%) 0 (%)

5. Lee et al. (2015) n/a n/a n/a n/a n/a n/a n/a

6. Noar et al. (2007) 3 (30%) 2 (20%) 0 (%) 4 (40%) 1 (10%) 1 (33%) 2 (20%)

7. Randall et al. (2014) 0 (%) 4 (36%) 5 (45%) 6 (55%) 1 (9%) 0 (%) 0 (%)

8. Robbins et al. (2004) 0 (%) 1 (20%) 0 (%) 3 (60%) 2 (40%) 0 (%) 1 (20%)

9. Vachon et al. (2014) 0 (%) 3 (50%) 1 (17%) 4 (67%) 1 (17%) n/a 0 (%)

Note: Although 123 meta-analytic distributions were included in our study, after outlier removal, we were left with 72 (because outliers were not identified in 
some distributions and others had fewer than 10 effect sizes after outlier removal). n/a = no outliers were identified (Lee et al., 2015) or all severe selection 
model mean estimates were discarded (Vachon et al., 2014).
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TABLE 5
Convergence Rates of the Practical Differences Before and After Outlier Removal

Publication bias 
method

Before outlier removal
1. 2. 3. 4. 5.

After outlier removal

negligible moderate severe negligible moderate severe

1. FE trim and fill 
(t&fFE �̅�)

67 (54%) 28 (23%) 28 (23%) - - 62 (86%) 46 (64%) 43 (60%) 45 (63%) 33 (46%) 22 (31%) 17 (24%)

2. RE trim and fill 
(t&fRE �̅�)

86 (70%) 20 (16%) 17 (14%) 93 (76%) - - 45 (63%) 39 (54%) 38 (53%) 34 (47%) 25 (35%) 13 (18%)

3. Moderate selection 
model (smm �̅�)

89 (72%) 16 (13%) 18 (15%) 74 (60%) 81 (66%) - - 37 (51%) 32 (44%) 32 (44%) 30 (42%) 10 (14%)

4. Five most precise 
samples (pr �̅�)

74 (60%) 25 (20%) 24 (20%) 85 (69%) 75 (61%) 80 (65%) - - 35 (49%) 36 (50%) 21 (29%) 15 (21%)

5. PET-PEESE (pp �̅�) 36 (29%) 45 (37%) 42 (34%) 59 (48%) 47 (38%) 50 (41%) 54 (44%) - - 27 (38%) 12 (17%) 33 (46%)

Note. There were 123 meta-analytic distributions included in our study. After outlier removal, 72 distributions were analyzed because outliers were not identified 
in some distributions and others had fewer than 10 effect sizes after outlier removal. Columns 2 and 10 show the number of times each publication bias detection 
method observed a ‘negligible’ practical difference in the corresponding naïve meta-analytic mean effect size estimate before and after outlier removal, 
respectively. Columns 3 and 11 show the number of times each publication bias detection method observed a ‘moderate’ practical difference in the corresponding 
naïve meta-analytic mean effect size estimate before and after outlier removal, respectively. Columns 4 and 12 show the number of times each publication bias 
detection method observed a ‘severe’ practical difference in the corresponding naïve meta-analytic mean effect size estimate before and after outlier removal, 
respectively. Values in parentheses in Columns 2, 3, 4, 10, 11, and 12 show the number of times in percentages each practical difference was detected. Columns 
5-9 report the inter-publication bias detection method convergence rates across the three levels of practical difference before (below diagonal, k = 123) and after 
(above diagonal, k = 72) outlier removal. Higher values below and above the diagonal represent higher rates of convergence between publication bias detection 
methods. A comparison of below and above the diagonal values indicates whether or not convergence improved following outlier removal.
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FIGURE 1
Search and Winnowing Process
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FIGURE 2
Contour-enhanced Funnel Plots (with FE Trim and Fill Imputations) and Forest Plots (Displaying the Cumulative Meta-

analysis by Precision) for Select Distributions from Karlin et al. (2015)

(a) Overall effect (k=42)

Funnel plot (with trim and fill imputations) Cumulative meta-analysis by precision

(b) Overall effect - without identified outliers (k=37)

Funnel plot (with trim and fill imputations) Cumulative meta-analysis by precision
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(c) Treatment variables: Feedback frequency: Continuous (k=17)

Funnel plot (with trim and fill imputations) Cumulative meta-analysis by precision

(d) Treatment variables: Feedback frequency: Continuous - without identified outliers (k=16)

Funnel plot (with trim and fill imputations) Cumulative meta-analysis by precision
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FIGURE 3
Dispersion of the Naïve Meta-analytic Mean Estimate and the Estimates from the 

Sensitivity Analyses Results Before and After Outlier Removal for Karlin et al.’s (2015) 
Distributions
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